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Si (100), 10 ps: Energy Specific Volume and Roughness
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Si (100), 10 ps: Transition Region (Former Experiments)
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A melt film seems to be responsible for the smoother 

surface at higher peak fluences.

Fostered by calorimetric experiments
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Ge (100), 10 ps: Energy Specific Volume and Roughness
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 Identical behavior for the surface roughness for Germanium.
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 Identical behavior of the surface roughness

 But increasing surface roughness with bursts.

 Higher removal rates with bursts
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 1. Step: Roughing

 High removal rate with bursts

 Rough surface

 2. Step: Smoothening

 Smoothening with single pulses with fluence 

above the transition

 To optimize: 𝑠𝑎 (min), 𝑑𝑉/𝑑𝑡 (max)

 Parameters which can be varied:

 Roughing: 𝑛𝑏𝑢𝑟𝑠𝑡, 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 Smoothening: 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 For only 5 values per parameter 

≈ 1.2 ⋅ 109
Experiments

Idea for a 2-Step Process: Roughening - Smoothening
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 1. Step: Roughing

 High removal rate with bursts

 Rough surface

 2. Step: Smoothening

 Smoothening with single pulses with fluence 

above the transition

 To optimize: 𝑠𝑎 (min), 𝑑𝑉/𝑑𝑡 (max)

 Parameters which can be varied:

 Roughing: 𝑛𝑏𝑢𝑟𝑠𝑡, 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 Smoothening: 𝜙0, 𝑤0, 𝑝𝑥, 𝑝𝑦 , 𝑓𝑟𝑒𝑝, 𝑛𝑙𝑎𝑦𝑒𝑟

 For only 5 values per parameter 

≈ 1.2 ⋅ 109
Experiments

 Even when we reduce ≈ 3′125 Experiments

 Can machine learning (ML) help?

Idea for a 2-Step Process: Roughening - Smoothening



 Bayesian Optimization
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Parameter Set 𝑃 Optimization Target

Process Optimization by Bayesian Optimization

 𝑛𝑏: #Pulses per Burst

 𝜙0,𝑟: Peak Fluence of a Single Pulse

 𝑛𝑙,𝑟: #Layer roughening

 𝜙0,𝑠: Peak Fluence of a Single Pulse 

 𝑛𝑙,𝑠: #Layer smoothening

 𝑝𝑥,𝑠: Pulse-pulse distance smoothening

 𝑝𝑦,𝑠: Line-line distance smoothening

 etc.

 𝑠𝑎: Surface roughness

 Τ𝑑𝑉 𝑑𝑡: Removal rate 

directly scales with the average depth per 

layer 𝑡

 Define scalar cost Function:

𝑐𝑓(𝑃) = 𝑓(𝑠𝑎(𝑃), 𝑡(𝑃))

▶ Goal: Approximate 𝒄𝒇(𝑷) and find it’s minimum value. 
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

Gaussian Processes

𝑃

𝑐𝑓
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the number of possible functions.
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions.

 Uncertainty for 𝑐𝑓(𝑃) between the 

measured points.

Gaussian Processes

Superposition of 100 samples

𝑃

𝑐𝑓

Slides from A. Michalowski ifsw



Bern University of Applied Sciences | ALPS

 No data available about 𝑐𝑓(𝑃).
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the number of possible functions.

 Each additional point further limits 

these functions.

 Uncertainty for 𝑐𝑓(𝑃) between the 

measured points.

 Describe with predicted mean and 

confidence region.
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 No data available about 𝑐𝑓(𝑃).

 Take a set out from the infinite space 

of functions (Gaussian process).

 A first measured value 𝑐𝑓(𝑃1) restricts 

the number of possible functions.

 Each additional point further limits 

these functions.

 Uncertainty for 𝑐𝑓(𝑃) between the 

measured points.

 Describe with predicted mean and 

confidence region.

 Uncertainty of measured values.

Gaussian Processes

Note: The model function was self-learned, it is not a polynomial 

or spline or something like that! 

𝑃

𝑐𝑓
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 The acquisition function determines 

the 𝑃 with most expected information.

Bayesian Optimization

𝑃

𝑐𝑓
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 The acquisition function determines 

the 𝑃 with most expected information.

 After e few steps 𝑐𝑓 𝑃 can be 

approximated in demanded precision 

to estimate

 𝑐𝑓𝑚𝑖𝑛(𝑃)

 𝑃𝑜𝑝𝑡

 This method can be extended to 

multi-dimensional parameter space 𝑃

Bayesian Optimization

𝑃

𝑐𝑓

𝑐𝑓𝑚𝑖𝑛

𝑃𝑜𝑝𝑡

Slides from A. Michalowski ifsw



 Example Ge
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Fixed Parameters: Varied Parameters:

Experimental Procedure

 𝑓𝑟𝑒𝑝 = 200 𝑘𝐻𝑧

 𝑤0 = 14 𝜇𝑚

 𝑝𝑥 = 𝑝𝑦 = 7 𝜇𝑚

 Δ𝜏 = 10 𝑝𝑠

 𝜆 = 1064 𝑛𝑚

 𝑁𝑟𝑜𝑢𝑔ℎ,𝑠𝑚𝑜𝑜𝑡ℎ = 1

 No autotracking of the focal position

 𝑛𝑏𝑢𝑟𝑠𝑡,𝑟𝑜𝑢𝑔ℎ = 1, 2, … 8

 0.17
𝐽

𝑐𝑚2 ≤ 𝜙0,𝑟𝑜𝑢𝑔ℎ ≤ 6
𝐽

𝑐𝑚2

 0.17
𝐽

𝑐𝑚2 ≤ 𝜙0,𝑠𝑚𝑜𝑜𝑡ℎ ≤ 6
𝐽

𝑐𝑚2

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑟𝑜𝑢𝑔ℎ = 1, 2, … 10

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑠𝑚𝑜𝑜𝑡ℎ = 5, 6, … 25

 Start with arbitrary set of parameters.

 Calculate 𝑐𝑓 and next set of parameters 

by Bayesian optimization

 Stop after 40 experiments.
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 Machine a square with a side length of

𝑠 = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

Experimental Procedure
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 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝑡 per layer.

 Deduce the value of the surface 

roughness 𝑠𝑎 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝜎 of the measured 

heights.

Experimental Procedure



Bern University of Applied Sciences | ALPS

 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝑡 per layer.

 Deduce the value of the surface 

roughness 𝑠𝑎 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝜎 of the measured 

heights.

 Deduce the number of holes 𝑁 in the 

selected area with image processing.

Experimental Procedure



Bern University of Applied Sciences | ALPS

 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝒕 per layer.

 Deduce the value of the surface 

roughness 𝒔𝒂 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝝈 of the measured 
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 Machine a square with a side length of

ℓ = 1.0 𝑚𝑚 with a set of parameter for 

roughing and smoothening.

 Measure surface topography with a laser 

scanning microscope.

 Deduce the step height and with this the 

average removal depth 𝒕 per layer.

 Deduce the value of the surface 

roughness 𝒔𝒂 in a selected machined area.

 Calculate in this selected area the 

standard deviation 𝝈 of the measured 

heights.

 Deduce the number of holes 𝑵 in the 

selected area with image processing.

 Calculate the value of the cost function

Experimental Procedure

 Cost function:

𝑐𝑓 = 𝑤𝑠𝑎
𝑠𝑎 ⋅ 𝑠𝑎 − 𝑤𝑡 ⋅ 𝑡 + 𝑤𝜎 ⋅ 𝜎 + 𝑤𝑁 ⋅ 𝑁

𝑠𝑎

𝑤𝑠𝑎
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Ge: Bayesian Optimization
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Ge: Bayesian Optimization
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Bayesian Optimization  Lowest value after 20 experiments.

 Additional 20 experiments no further 

improvement.

 Best parameters:

 𝑛𝑏𝑢𝑟𝑠𝑡,𝑟𝑜𝑢𝑔ℎ = 3

 𝜙0,𝑟𝑜𝑢𝑔ℎ = 2.33
𝐽

𝑐𝑚2

 𝜙0,𝑠𝑚𝑜𝑜𝑡ℎ = 6
𝐽

𝑐𝑚2

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑟𝑜𝑢𝑔ℎ = 5

 𝑛𝑙𝑎𝑦𝑒𝑟,𝑠𝑚𝑜𝑜𝑡ℎ = 13

 Results

 𝑠𝑎 = 390 𝑛𝑚, 𝑡 = 1.79 𝜇𝑚 →
dV

dt
= 1.05

mm3

min



 Example: Steel Surfaces
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Parameter Set 𝑃 Optimization Target

Smart Laser Micromachining Platform - Scheme

 𝜙0,𝑆𝑃: Peak Fluence of a Single Pulse

 𝑛𝑏: #Pulses per Burst 

 𝑜: Overlap

 𝑟: Random

 𝑓𝑟: Repetition rate

 𝐸𝑃,𝑏: "burst dynamics"

 Δ𝜏: Pulse duration

 𝑤0: Spot size

 𝑠𝑎: Surface roughness

 Define cost Function:

𝑐𝑓 = 𝑠𝑎

+𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑑 < 2 𝜇𝑚

+𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝐵𝑎𝑑 𝑟𝑒𝑔𝑖𝑜𝑛𝑠)

▶ Goal: Autonomously find minimum of 𝒄𝒇
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Model Learning from Data

 Learning models from data with AISI 304 

Gaussian processes are employed to learn models from data.

 Learned models for the roughness in laser-micromachining:
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ML Based Optimization on AISI 420 with Agile fs System

ABLATION Sample 48 Sample 50 Sample 52

Best roughness value 𝑠𝑎 / 𝜇𝑚 0,294 0,292 0,139

Pitch 𝑝𝑥 = 𝑝𝑦 / m 5,6 8 8

Random / 𝜇𝑚 1,4 2 2

𝑛𝑠𝑙𝑖𝑐𝑒𝑠 200 200 200

𝑓𝑟 / 𝑘𝐻𝑧 2000 2000 2000

𝜙0,𝑆𝑃 / 𝐽/𝑐𝑚2
0,510 1,706 0,153

𝑛𝑏 2 2 2

𝑤0 / 𝜇𝑚 10,7 12,4 12,4

Δ𝜏 / ps 2ps 350fs 2ps

Material: Steel AISI 420 (1.2083)

Laser source: NKT/CSEM

Number of samples: 110

Optimization method: AI based
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ML Based Optimization on AISI 420 with Agile fs System

ABLATION Sample 52

Best roughness value 𝑠𝑎 / 𝜇𝑚 0,139

Pitch 𝑝𝑥 = 𝑝𝑦 / m 8

Random / 𝜇𝑚 2

𝑛𝑠𝑙𝑖𝑐𝑒𝑠 200

𝑓𝑟 / 𝑘𝐻𝑧 2000

𝜙0,𝑆𝑃 / 𝐽/𝑐𝑚2
0,153

𝑛𝑏 2

𝑤0 / 𝜇𝑚 12,4

Δ𝜏 / ps 2ps

Material: Steel AISI 420 (1.2083)

Laser source: NKT/CSEM

Number of samples: 110

Optimization method: AI based
500X

5000X 20000X

2000X

Take care of your sensors
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 We demonstrated the efficient optimization of a two-step process (roughening –

smoothening) with Bayesian optimization.

 This method represents a powerful tool for a tremendous reduction of the demanded 

number of experiments and can be automized.

 For Ge a good set of parameter was found after 40 experiments instead of 

≈ 1000 for a systematic study.

 But take care

 The definition of the cost function uses detailed knowledge about the goals.

 Use adequate sensors.

Summary / Outlook
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