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Si (100), 10 ps: Energy Specific Volume and Roughness

Si (100): Energy Specific Volume, At =10 ps Si (100): Surface Roughness, At = 10 ps
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Si (100), 10 ps: Energy Specific Volume and Roughness

Si (100): Energy Specific Volume, At =10 ps Si (100): Surface Roughness, At = 10 ps
2 5
1.8 .0.'0 4.5
o ©
1.6 . . $ 4 .
1.4 3.5
G e o g o
5 12 ° o O 3
= ° c 8 g o
E 1. ¢ o o Fas
Tog ° 29 4, °
. 2 E Py
e
0.6 E c 1.5 °
04 o +— $ 1 o
| -
0.2 T 3 0.5
vy ‘smoce © ° ® e
0 I 0
0 1 2 3 4 5 6 7 8 Lo 0 1 2 3 4 5 6 7 8

) (e | ) |

Bern University of Applied Sciences | ALPS



Si (100), 10 ps: Transition Region (Former Experiments)

At =10 ps, Atz =12 ns
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A melt film seems to be responsible for the smoother

surface at higher peak fluences.
Fostered by calorimetric experiments
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Ge (100), 10 ps: Energy Specific Volume and Roughness

Germanium, At=10ps, A=1064nm, Energy Specific Volume Germanium, At=10ps, A=1064nm, Surface Roughness s,
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Identical behavior for the surface roughness for Germanium.
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Ge (100), 10 ps: Bursts

At =10 ps, Atg =12 ns At =10 ps, Aty =12 ns
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Identical behavior of the surface roughness
But increasing surface roughness with bursts.

Higher removal rates with bursts
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ldea for a 2-Step Process: Roughening - Smoothening
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1. Step: Roughing

» High removal rate with bursts
» Rough surface

2. Step: Smoothening

>

Smoothening with single pulses with fluence
above the transition

To optimize: s, (min), dV/dt (max)
Parameters which can be varied:
> Rough i Ng. Npyurst, d)Or Wo, Px, pyr f;‘epr nlayer

» Smoothening: ¢, Wy, Dy, Dy, freps Miayer

» For only 5 values per parameter
~ 1.2 - 10° Experiments



ldea for a 2-Step Process: Roughening - Smoothening

v

1. Step: Roughing

» High removal rate with bursts
» Rough surface

2. Step: Smoothening

>

Smoothening with single pulses with fluence
above the transition

» To optimize: s, (min), dV/dt (max)

» Parameters which can be varied:
> Roughing: Npurst, ¢0r rnlayer
» Smoothening: ¢,,  Nigyer

~ For only 5 values per parameter
~ 1.2 - 10° Experiments

Even when we reduce =~ 3’125 Experiments
Can machine learning (ML) help?

v

v
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~» Bayesian Optimization




Process Optimization by Bayesian Optimization

Parameter Set P Optimization Target
n,: #Pulses per Burst s,. Surface roughness
¢o,r: Peak Fluence of a Single Pulse dV /dt: Removal rate
n,,: #Layer roughening directly scales with the average depth per

¢os: Peak Fluence of a Single Pulse layer t

n,s: #Layer smoothening

pxs: Pulse-pulse distance smoothening
pys: Line-line distance smoothening
etc.

Define scalar cost Function:

cf (P) = f(sq(P), t(P))

Goal: Approximate cf(P) and find it’s minimum value.
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Gaussian Processes

cf No data available about cf (P).

Take a set out from the infinite space
of functions (Gaussian process).
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the number of possible functions.
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Gaussian Processes

CfSuperposition of 100 samples No data available about cf (P).

Take a set out from the infinite space
of functions (Gaussian process).

A first measured value cf(P;) restricts
the number of possible functions.

Each additional point further limits
these functions.

Uncertainty for ¢f(P) between the
measured points.
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Gaussian Processes

cf No data available about cf (P).

Take a set out from the infinite space
of functions (Gaussian process).

A first measured value cf(P;) restricts
the number of possible functions.

Each additional point further limits
these functions.

Uncertainty for ¢f(P) between the
measured points.

Describe with predicted mean and
confidence region.
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Gaussian Processes

cf

No data available about cf(P).

Take a set out from the infinite space
of functions (Gaussian process).

A first measured value cf(P;) restricts
the number of possible functions.

Each additional point further limits
these functions.

Uncertainty for ¢f(P) between the
measured points.

Describe with predicted mean and
confidence region.

Uncertainty of measured values.

Note: The model function V\ESIS self-learned, it is not a polynomial
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or spline or something like that! Slides from A. Michalowski ifsw



Bayesian Optimization

cf The acquisition function determines
the P with most expected information.
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Bayesian Optimization

cf
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The acquisition function determines
the P with most expected information.

After e few steps cf(P) can be
approximated in demanded precision
to estimate

Cfmin(P)

Popt

This method can be extended to
multi-dimensional parameter space P
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Experimental Procedure

Fixed Parameters:

frep = 200 kHz

wo = 14 um

Px = Py = 7 um
At = 10 ps

A =1064 nm

Nrough,smooth =1
No autotracking of the focal position
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Varied Parameters:

Npurst,rough = 1,2,..8

J
0. 17— < ¢0r0ugh = 6_2

c2_ cm

0.17 sz = 4)0 smooth = 6—— sz
Mayerrough = 1,2,...10

Niayer,smooth = 5,6,..25

Start with arbitrary set of parameters.
Calculate ¢f and next set of parameters
by Bayesian optimization

Stop after 40 experiments.



Experimental Procedure

Machine a square with a side length of
s = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.
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Experimental Procedure
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Machine a square with a side length of
s = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.

Deduce the step height and with this the
average removal depth t per layer.



Experimental Procedure

Machine a square with a side length of
s = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.

Deduce the step height and with this the
average removal depth t per layer.

Deduce the value of the surface
roughness s, in a selected machined area.
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Experimental Procedure

HGhenhistogramm Hohenhistogramm Machine a square with a side length of
¢ = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.

Deduce the step height and with this the
average removal depth t per layer.

Deduce the value of the surface
roughness s, in a selected machined area.

Calculate in this selected area the
standard deviation o of the measured
heights.
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Experimental Procedure
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File: ge_34.tiff, numHoles > 9 = 8, img_STD = 29.74

300
400

1000

100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500

100 B

500
600 F
700 |
800 [&
900 F

200 f

100 200 300 400 500

100 200 300 400 500

1

100

200
300 |
400 |
500
600
700
800 [
900

000

100
200
300
400
500
600
700
800
900

1000

100 200 300 400 500

100 200 300 400 500

Machine a square with a side length of
£ = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.

Deduce the step height and with this the
average removal depth t per layer.

Deduce the value of the surface
roughness s, in a selected machined area.

Calculate in this selected area the
standard deviation o of the measured
heights.

Deduce the number of holes N in the
selected area with image processing.
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Machine a square with a side length of
£ = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.

Deduce the step height and with this the
average removal depth t per layer.

Deduce the value of the surface
roughness s, in a selected machined area.

Calculate in this selected area the
standard deviation a of the measured
heights.

Deduce the number of holes N in the
selected area with image processing.



Experimental Procedure

Cost function:

cf =ws, (Sq) Sq—we-t+wz-o+wy-N

Wsa A
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Machine a square with a side length of
¢ = 1.0 mm with a set of parameter for
roughing and smoothening.

Measure surface topography with a laser
scanning microscope.

Deduce the step height and with this the
average removal depth t per layer.

Deduce the value of the surface
roughness s, in a selected machined area.

Calculate in this selected area the
standard deviation a of the measured
heights.

Deduce the number of holes N in the
selected area with image processing.

Calculate the value of the cost function



Ge: Bayesian Optimization

Bayesian Optimization
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Ge: Bayesian Optimization

Bayesian Optimization Bayesian Optimization
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Ge: Bayesian Optimization

Bayesian Optimization
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Ge: Bayesian Optimization

Lowest value after 20 experiments.

Additional 20 experiments no further
improvement.

Best parameters:

Npurst,rough = 3

¢0 ,yough — =233— sz

= 6———
¢ 0,smooth — sz

Niayer,rough = 5

Niayer,smooth — 13

Results
dv m3
e = 390 nm, t—179um—>d——105

min

Bern University of Applied Sciences | ALPS
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160

140

120

100

80

60

40

20

Bayesian Optimization

[ ]
PY [
® ® °® ° ( I
©0
10 15 20 25 30 35 40
Experiment



» Example: Steel Surfaces




Istituto
Dalle Molle
di studi

l

artificiale

Smart Laser Micromachining Platform - Scheme

O
5]
i
e

Parameter Set P Optimization Target
¢o,sp: Peak Fluence of a Single Pulse s,. Surface roughness
n,. #Pulses per Burst
o: Overlap Define cost Function:
r: Random cf = Sa

+Penalty(d < 2 um)

fr- Repetition rate ,
+Penalty(Bad regions)

Ep,: "burst dynamics”
At: Pulse duration
wy. Spot size

Goal: Autonomously find minimum of cf
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Istituto

Dalle Molle

di studi
sullintelligenza
artificiale

)

Model Learning from Data

IDSTA
Learning models from data with AISI 304
Gaussian processes are employed to learn models from data.
Learned models for the roughness in laser-micromachining:
frep 400.00 randx 0.75 -
0% 0.8 - —ean
L0.72 0.7 -
o 0.6 -
g:““ 0.5 -
E—ou 04 -
o 03 -
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Material: Steel AISI 420 (1.2083)
Laser source: NKT/CSEM

ML Based Optimization on AISI 420 with Agile fs System
Number of samples: 110

Optimization method: Al based ;

ABLATION Sample 48 | Sample 50 | Sample 52 _—_
Best roughness value s, / um 0,294 0,292 0,139

N —— =

Pitch py =p, / pm 5,6 8 8
Random / um 1,4 p) p)
Nstices 200 200 200
fr / kHz 2000 2000 2000
Go,sp / J/cm? 0,510 1,706 0,153
np 2 2 2

wy / um 10,7 12,4 12,4
At / ps 2ps 350fs 2ps
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ML Based Optimization on AISI 420 with Agile fs System

Material: Steel AISI 420 (1.2083)
Laser source: NKT/CSEM
Number of samples: 110
Optimization method: Al based

ABLATION Sample 52

Best roughness value s, / um 0,139

Pitch p, = p, / um

Random / um 2
nSliceS 200 Reference fiag = Oui Osv.  Josef Zurcher ' WG = &.0mmn fhag - 2 0KX Reference fag = Oui Osv.  Josef Zarcher
fr / kHz 2000
bo,sp / J/cm? 0,153
n 2
wy / um 12,4
At / ps 2ps
Bern University of Applied Sciences | ALPS A % Gy, 'i, ¢ A
BDS wooe. g~ GOBKS. .. Ra i ow | itoaaie |  — A= o ... Ty = SOIORK . P W < TR, . Souar 2




Summary / Outlook

We demonstrated the efficient optimization of a two-step process (roughening -
smoothening) with Bayesian optimization.

This method represents a powerful tool for a tremendous reduction of the demanded
number of experiments and can be automized.

For Ge a good set of parameter was found after 40 experiments instead of
~ 1000 for a systematic study.

But take care

The definition of the cost function uses detailed knowledge about the goals.
Use adequate sensors.
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