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 For long time the sub 100 fs regime was only 

accessible with Ti:Sapphire laser systems.

 They have the reputation to be complicate to 

operate and "demanding a physicist to drive 

them".

Motivation: Sub-100 fs Pulses

ODIN Ti-Sapphire laser in operation - Ti-sapphire laser - Wikipedia

https://en.wikipedia.org/wiki/Ti-sapphire_laser
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MIKS1_S | n2 Photonics (n2-photonics.de)

 For long time the sub 100 fs regime was only 

accessible with Ti:Sapphire laser systems.

 They have the reputation to be complicate to 

operate and "demanding a physicist to drive 

them".

 New devices allow to broaden the spectrum of 

industrial grade ultrashort pulsed laser 

systems to access the regime of sub 100 fs 

pulses for industrial micro-processing.

 Explore the sub 100 fs regime in an 

explorative study.

Motivation: Sub-100 fs Pulses

https://www.n2-photonics.de/miks1-s
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Experimental Set-Up IR Pulse Shortening
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 Carbide CB3-40-400-20- HB 

 ∆𝜏 = 270 𝑓𝑠

 𝜆 = 1030 𝑛𝑚

 𝑓𝑟 = 800 𝑘𝐻𝑧

 Pharos PH1-15-0400-02-30

 ∆𝜏 = 270 𝑓𝑠

 𝜆 = 1030 𝑛𝑚

 𝑓𝑟 = 200 𝑘𝐻𝑧

𝜆/4 - Plate
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 Δ𝜏𝑚𝑖𝑛 ≈57 fs

 𝑤0 ≈ 15 µ𝑚

 𝑀2 ≈ 1.5

 Circular polarized

 Spot size and position independent on

 Pulse duration

 Pulse energy 

Carbide

Pharos

 Due to chromatic dispersion

 Each wavelength is focused at different 

positions.

 Waist radii 𝑤0(𝜆) will also slightly 

differ.

 Could this lead to an elongated focus?
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 Fitted parameters:

 𝜆 = 1030 𝑛𝑚:

𝑤0 = 15.4 𝜇𝑚, 𝑀2 = 1.4

 Δ𝜏 = 60 𝑓𝑠, broad spectrum (Pharos):

𝑤0 = 15.7 𝜇𝑚, 𝑀2 = 1.43, 𝑑𝑜𝑓𝑓 = 45 𝜇𝑚

 Focal position of 60 𝑓𝑠 beam is shifted by 

45 𝜇𝑚 from objective away

 Spot size gets a little bigger ≈ 2 %

 Slightly higher 𝑀2

 No elongated focus

Influence of Chromatic Dispersion on Focusing
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 Will beam deflection lead to beam 

distortion due to chromatic dispersion?

 Deflect the beam in x-direction and 

measure beam caustic and pulse duration.

Chromatic Dispersion and Beam Deflection

𝑥

𝑦
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 The pulse duration for the full-FS objective 

rests unaffected.

 Dispersion not compensated for partially FS 

objective.

Pharos: Influence on the Beam Deflection
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 The pulse duration for the full-FS objective 

rests unaffected.

 Dispersion not compensated for partially FS 

objective.

 Waist in x-direction (offset direction) 

significantly increase for 𝑥𝑜𝑓𝑓 > 7.5 𝑚𝑚.

 For the y-direction (perpendicular to the offset) 

the waist radius is unaffected.

 Identical behavior for beam quality 𝑀2
.

 For short pulses (Δ𝜏 < 500𝑓𝑠) the scan-field 

should be limited from ± 24 𝑚𝑚 to ±5 𝑚𝑚 for 

the 𝑓 = 100 𝑚𝑚 Objective.

Pharos: Influence on the Beam Deflection
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Experimental Procedure

▶ 𝑓𝑟 fixed to 800 𝑘𝐻𝑧 respectively 200 𝑘𝐻𝑧 and 

peak fluence increased from the threshold to 

several 𝐽/𝑐𝑚2
.

▶ Squares of side length 𝑠 = 1 𝑚𝑚 machined with 

spot and line distance 𝑝𝑥 = 𝑝𝑦 = 5 𝜇𝑚 and a 

fixed number of pulses per area.

▶ Depth 𝑑 measured with either a white lite 

interferometric microscope (WLI) or a confocal 

laser scanning microscope (LSM).

▶ Energy specific volume  given by:

𝛾 = ൗ
𝑑𝑉

𝑑𝑡
𝑃𝑎𝑣 =

𝑑𝑉

𝑑𝐸
=

𝑠2 ∙ 𝑑

𝑑𝑡 ∙ 𝑃𝑎𝑣
=

𝑑 ∙ 𝑝𝑥 ∙ 𝑝𝑦 ∙ 𝑓𝑟

𝑁𝑆𝑙 ∙ 𝑃𝑎𝑣

▶ Surface roughness deduced following ISO 

25178.
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 With decreasing pulse duration energy specific 

volume first drops (Δ𝜏 = 100 𝑓𝑠) and then 

increases again for Δ𝜏 = 57 𝑓𝑠.

 Significantly reduced threshold for Δ𝜏 = 57 𝑓𝑠
and Δ𝜏 = 100 𝑓𝑠.

Carbide: UV Grade Fused Silica
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 With decreasing pulse duration energy specific 

volume first drops (Δ𝜏 = 100 𝑓𝑠) and then 

increases again for Δ𝜏 = 57 𝑓𝑠.

 Significantly reduced threshold for Δ𝜏 = 57 𝑓𝑠
and Δ𝜏 = 100 𝑓𝑠.

 Roughness of the process stays almost 

constants for peak fluences above the 

threshold.

 Smaller for Δ𝜏 = 57 𝑓𝑠 and Δ𝜏 = 100 𝑓𝑠.

Carbide: UV Grade Fused Silica
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 With decreasing pulse duration energy specific 

volume first drops (Δ𝜏 = 100 𝑓𝑠) and then 

increases again for Δ𝜏 = 57 𝑓𝑠.

 Significantly reduced threshold for Δ𝜏 = 57 𝑓𝑠
and Δ𝜏 = 100 𝑓𝑠.

 Roughness of the process stays almost 

constants for peak fluences above the 

threshold.

 Smaller for Δ𝜏 = 57 𝑓𝑠 and Δ𝜏 = 100 𝑓𝑠.

 Edge quality massively improved for shorter 

pulse durations Δ𝜏 = 57 𝑓𝑠 and Δ𝜏 = 100 𝑓𝑠.

 No visible chipping for Δ𝜏 = 57 𝑓𝑠 and

𝑃𝑎𝑣 = 23.3 𝑊. 

Carbide: UV Grade Fused Silica
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 With decreasing pulse duration energy specific 

volume first drops (Δ𝜏 = 100 𝑓𝑠) and then 

increases again for Δ𝜏 = 57 𝑓𝑠.

 Significantly reduced threshold for Δ𝜏 = 57 𝑓𝑠
and Δ𝜏 = 100 𝑓𝑠.

 Roughness of the process stays almost 

constants for peak fluences above the 

threshold.

 Smaller for Δ𝜏 = 57 𝑓𝑠 and Δ𝜏 = 100 𝑓𝑠.

 Edge quality massively improved for shorter 

pulse durations Δ𝜏 = 57 𝑓𝑠 and Δ𝜏 = 100 𝑓𝑠.

 No visible chipping for Δ𝜏 = 57 𝑓𝑠 and

𝑃𝑎𝑣 = 23.3 𝑊. 

 Line Roughness strongly decreases for short 

pulses

 Sub 100 fs pulses lead to high edge quality 

also at high average powers.

Carbide: UV Grade Fused Silica
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 Edge quality increases for shorter pulse 

durations.

 Almost no chipping for Δ𝜏 = 57 𝑓𝑠 and

𝑃𝑎𝑣 = 28 𝑊. 

 Sub 100 fs pulses lead to high edge quality 

also at high average powers.

Carbide: Sapphire
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Pharos: NSF2, Δ𝜏𝐺𝑎𝑢𝑠𝑠 = 57 𝑓𝑠

𝜙0 = 1.7 𝐽/𝑐𝑚2 𝜙0 = 2.0 𝐽/𝑐𝑚2 𝜙0 = 2.5 𝐽/𝑐𝑚2 𝜙0 = 2.8 𝐽/𝑐𝑚2 𝜙0 = 3.2 𝐽/𝑐𝑚2 𝜙0 = 3.6 𝐽/𝑐𝑚2

𝜙0 = 4.0 𝐽/𝑐𝑚2 𝜙0 = 4.6 𝐽/𝑐𝑚2 𝜙0 = 4.9 𝐽/𝑐𝑚2 𝜙0 = 5.7 𝐽/𝑐𝑚2 𝜙0 = 6.5 𝐽/𝑐𝑚2 𝜙0 = 7.3 𝐽/𝑐𝑚2

𝜙0 = 8.1 𝐽/𝑐𝑚2 𝜙0 = 9.7 𝐽/𝑐𝑚2 𝜙0 = 11.4 𝐽/𝑐𝑚2 𝜙0 = 12.9 𝐽/𝑐𝑚2 𝜙0 = 14.7 𝐽/𝑐𝑚2

 Cracking strongly reduced for 57 𝑓𝑠 pulses at 1030 𝑛𝑚.

 Even some squares without or with almost no cracks.

𝜙0 = 1 𝐽/𝑐𝑚2 𝜙0 = 1.6 𝐽/𝑐𝑚2 𝜙0 = 2.1 𝐽/𝑐𝑚2

𝜙0 = 3.1 𝐽/𝑐𝑚2 𝜙0 = 4.2 𝐽/𝑐𝑚2 𝜙0 = 5.2 𝐽/𝑐𝑚2

cf. Satsuma 515 nm, 350 fs



Super Small
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Experimental Setup 
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Experimental Setup 

 Laser: Fuego UV 

 𝜆 = 355 𝑛𝑚

 Δ𝜏 = 10 𝑝𝑠

 𝑓𝑟𝑒𝑝 = 0.2 − 2 𝑀𝐻𝑧

 

 Galvo scanner: SCANLAB IntelliSCANde14

 Synchronized on the laser pulse train

 Objective: Microscan Obj. UV (Pulsar Photonics)

 𝑓𝑜𝑏𝑗 = 10 𝑚𝑚

 2 ⋅ 𝑤0 < 1.5 𝜇𝑚

 Smallest Structures:

~of the order of the beam spot diameter
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Rayleigh Range
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Rayleigh Range

https://commons.wikimedia.org/w/index.php?curid=6002103

Rayleigh length

z

Gaussian beam width

𝑧𝑅~5 𝜇𝑚Microscan Objective,
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Rayleigh Range
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length this can become 

significant.
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Rayleigh Range
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Rayleigh Range
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 In case of a short Rayleigh 

length this can become 

significant.

 And leads to an increase 

(red) or decrease (yellow) 

of the energy specific 

volume.

 The structures become 

deeper or less deep than 

expected (or the work 

piece has to be shifted)

 Adaption of the model 

might by needed
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 Model:

𝑑𝑉

𝑑𝐸
=

1

2
∙

𝛿

𝜙0
∙ 𝑙𝑛2

𝜙0

𝜙𝑡ℎ

 As expected, deeper squares at high fluences 

and therefore higher energy specific volume 

compared to the model. 

 Adapted Model:

 Calculate ablation depth for first layer

 Adapt spot size resp. 𝜙0 accordingly

 Repeat for each layer and calculate the full 

depth

 Then calculate the energy specific volume

 Least square fit for 𝜙𝑡ℎ an 𝛿

Model for short Rayleigh Length

𝜙𝑡ℎ = 0.603
𝐽

𝑐𝑚2

𝛿 = 36 𝑛𝑚
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 Model:

𝑑𝑉

𝑑𝐸
=

1

2
∙

𝛿

𝜙0
∙ 𝑙𝑛2

𝜙0

𝜙𝑡ℎ

 As expected, deeper squares at high fluences 

and therefore higher energy specific volume 

compared to the model. 

 Adapted Model:

 Calculate ablation depth for first layer

 Adapt spot size resp. 𝜙0 accordingly

 Repeat for each layer and calculate the full 

depth

 Then calculate the energy specific volume

 Least square fit for 𝜙𝑡ℎ an 𝛿

Model for short Rayleigh Length
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Adapted Model

𝜙𝑡ℎ = 0.603
𝐽

𝑐𝑚2

𝛿 = 36 𝑛𝑚

𝜙𝑡ℎ = 0.524
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𝑐𝑚2

𝛿 = 9.8 𝑛𝑚
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Steel AISI 304, Δ𝜏 = 10 𝑝𝑠, 𝜆 = 355 𝑛𝑚, 𝑤0 = 0.77 𝜇𝑚, 𝑁𝑆𝐿 = 10

1.45
Τ𝐽 𝑐𝑚2

3.75
Τ𝐽 𝑐𝑚2

10.6
Τ𝐽 𝑐𝑚2

42.7
Τ𝐽 𝑐𝑚2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

d
V

/d
E 

/ 
µ

m
3
/µ

J

f0 / J/cm2

Energy Specific Volume

Experiment

Model

Adapted Model

 No formation of CLP observed, also not for 

very high peak fluences
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Micro-Swiss in Steel Butterfly in Steel Structure in Copper

Some Examples

≈ 200 𝜇𝑚
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 Topographic map of Switzerland machined in sapphire with a scale of 1:850'000'000.

 Dimension: 410 µm x 220 µm with maximum depth of 20 µm.

 A disruptive technology in laser micromachining for highest precision and resolution.

 Applications: Almost invisible security features, watches and jewelry, functional surfaces.

Extreme Precision: Small Spots

5 mm

Human hair 

same scale
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Video (8x) of Machinig Switzerlands Topography
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 Super Short:

 The regime of sub 100 fs pulses with an industrial grade set up was investigated in an 

explorative study concerning ablation efficiency, surface roughness and edge quality.

 Metals, tungsten carbide, PCD, Zirconia and other ceramics (all not shown here): No 

significant improvement

 Glasses: Massively improved edge quality and reduced roughness at similar energy 

specific volumes.

 Investigations ongoing

 Super small:

 Microspot scanning system tested and very precise structures machined

 No cavity formation in steel in UV with microscan

 Limiting factor - Rayleigh range

Summary



Thank you very much for your kind attention
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