Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Super Short or Super Small: Exploring the Limits of Laser Microsprocessing with Industrial Grade Systems

B. Neuenschwander

Institute for Applied Laser, Photonics and Surface Technologies ALPS

Berner Fachhochschule Haute école spécialisée bernoise
Bern University of Applied Sciences

Super Short

Motivation: Sub-100 fs Pulses

[ODIN Ti-Sapphire laser in operation](https://en.wikipedia.org/wiki/Ti-sapphire_laser) - Ti-sapphire laser - Wikipedia

- \triangleright For long time the sub 100 fs regime was only accessible with Ti:Sapphire laser systems.
- \blacktriangleright They have the reputation to be complicate to operate and "demanding a physicist to drive them".

Motivation: Sub-100 fs Pulses

[MIKS1_S | n2 Photonics \(n2-photonics.de\)](https://www.n2-photonics.de/miks1-s)

- \triangleright For long time the sub 100 fs regime was only accessible with Ti:Sapphire laser systems.
- \triangleright They have the reputation to be complicate to operate and "demanding a physicist to drive them".
- New devices allow to broaden the spectrum of industrial grade ultrashort pulsed laser systems to access the regime of sub 100 fs pulses for industrial micro-processing.
- Explore the sub 100 fs regime in an explorative study.

Experimental Set-Up IR Pulse Shortening Telescope 1 $M<1$ MIKS1S Compr. SCANLAB ExcellisScan14 $f_{Obj} = 100$ mm $WD = 137 \, mm$ Target Auto-Attenuator Telescope 2 and the correlator $M>1$ ح / $\overline{\mathcal{L}}$ Plate Polarizer ▶ Carbide CB3-40-400-20- HB $\Delta \tau = 270$ fs $\lambda = 1030$ nm $f_r = 800 kHz$ ▶ Pharos PH1-15-0400-02-30 $\Delta \tau = 270$ fs $\lambda = 1030$ nm $f_r = 200 kHz$ $\lambda/4$ - Plate

Laser Source

Autocorrelator Trace and Spectrum after Objective

- $\Delta \tau_{min} \approx 57$ fs
- $w_0 \approx 15 \mu m$
- $M^2 \approx 1.5$
- ▶ Circular polarized
- ▶ Spot size and position independent on
	- **Pulse duration**
	- ▶ Pulse energy
- \triangleright Due to chromatic dispersion
	- ▶ Each wavelength is focused at different positions.
	- Waist radii $w_0(\lambda)$ will also slightly differ.
- Could this lead to an elongated focus?

Influence of Chromatic Dispersion on Focusing

- \blacktriangleright Fitted parameters:
	- $\lambda = 1030$ nm: $w_0 = 15.4 \ \mu m$, $M^2 = 1.4$
	- $\Delta \tau = 60$ fs, broad spectrum (Pharos): $w_0 = 15.7 \ \mu m$, $M^2 = 1.43$, $d_{off} = 45 \ \mu m$
- Focal position of 60 fs beam is shifted by 45 μ m from objective away
- ► Spot size gets a little bigger $\approx 2\%$
- Slightly higher M^2
- \triangleright No elongated focus

Chromatic Dispersion and Beam Deflection

- ▶ Will beam deflection lead to beam distortion due to chromatic dispersion?
- ▶ Deflect the beam in x-direction and measure beam caustic and pulse duration.

Pharos: Influence on the Beam Deflection

- \blacktriangleright The pulse duration for the full-FS objective rests unaffected.
- Dispersion not compensated for partially FS objective.

Pharos: Influence on the Beam Deflection

- \blacktriangleright The pulse duration for the full-FS objective rests unaffected.
- Dispersion not compensated for partially FS objective.
- Waist in x-direction (offset direction) significantly increase for $x_{off} > 7.5$ mm.
- For the y-direction (perpendicular to the offset) the waist radius is unaffected.
- Identical behavior for beam quality M^2 .
- For short pulses ($\Delta \tau < 500fs$) the scan-field should be limited from \pm 24 mm to \pm 5 mm for the $f = 100$ mm Objective.

Experimental Procedure

- \blacktriangleright f_r fixed to 800 kHz respectively 200 kHz and peak fluence increased from the threshold to several $J/cm²$.
- ▶ Squares of side length $s = 1$ mm machined with spot and line distance $p_x = p_y = 5 \ \mu m$ and a fixed number of pulses per area.
- \triangleright Depth d measured with either a white lite interferometric microscope (WLI) or a confocal laser scanning microscope (LSM).
- **Energy specific volume** γ **given by:**

$$
\gamma = \left(\frac{dV}{dt}\right) / P_{av} = \frac{dV}{dE} = \frac{s^2 \cdot d}{dt \cdot P_{av}} = \frac{d \cdot p_x \cdot p_y \cdot f_r}{N_{SI} \cdot P_{av}}
$$

▶ Surface roughness deduced following ISO 25178.

Carbide: UV Grade Fused Silica

- ▶ With decreasing pulse duration energy specific volume first drops ($\Delta \tau = 100$ *fs*) and then increases again for $\Delta \tau = 57$ fs.
- Significantly reduced threshold for $\Delta \tau = 57$ fs and $\Delta \tau = 100$ *fs.*

Carbide: UV Grade Fused Silica

- ▶ With decreasing pulse duration energy specific volume first drops ($\Delta \tau = 100$ *fs*) and then increases again for $\Delta \tau = 57$ fs.
- Significantly reduced threshold for $\Delta \tau = 57$ fs and $\Delta \tau = 100$ *fs.*
- ▶ Roughness of the process stays almost constants for peak fluences above the threshold.
- Smaller for $\Delta \tau = 57$ *fs* and $\Delta \tau = 100$ *fs.*

- ▶ With decreasing pulse duration energy specific volume first drops ($\Delta \tau = 100$ *fs*) and then increases again for $\Delta \tau = 57$ fs.
- Significantly reduced threshold for $\Delta \tau = 57$ fs and $\Delta \tau = 100$ *fs.*
- Roughness of the process stays almost constants for peak fluences above the threshold.
- Smaller for $\Delta \tau = 57$ *fs* and $\Delta \tau = 100$ *fs.*
- Edge quality massively improved for shorter pulse durations $\Delta \tau = 57$ *fs* and $\Delta \tau = 100$ *fs*.
- No visible chipping for $\Delta \tau = 57$ *fs* and $P_{av} = 23.3 W$.

Carbide: UV Grade Fused Silica

- \triangleright With decreasing pulse duration energy specific volume first drops ($\Delta \tau = 100$ *fs*) and then increases again for $\Delta \tau = 57$ fs.
- Significantly reduced threshold for $\Delta \tau = 57$ fs and $\Delta \tau = 100$ *fs.*
- ▶ Roughness of the process stays almost constants for peak fluences above the threshold.
- Smaller for $\Delta \tau = 57$ *fs* and $\Delta \tau = 100$ *fs.*
- \blacktriangleright Edge quality massively improved for shorter pulse durations $\Delta \tau = 57$ *fs* and $\Delta \tau = 100$ *fs*.
- No visible chipping for $\Delta \tau = 57$ fs and $P_{av} = 23.3 W$.
- Line Roughness strongly decreases for short pulses
- \triangleright Sub 100 fs pulses lead to high edge quality also at high average powers.

- Edge quality increases for shorter pulse durations.
- Almost no chipping for $\Delta \tau = 57$ fs and $P_{av} = 28 W$.
- \triangleright Sub 100 fs pulses lead to high edge quality also at high average powers.

Pharos: NSF2, $\Delta \tau_{Gauss} = 57$ fs

▶ Even some squares without or with almost no cracks.

Berner Fachhochschule Haute école spécialisée bernoise
Bern University of Applied Sciences

Super Small

Experimental Setup

Experimental Setup

- ► Laser: Fuego UV
	- $\lambda = 355 \text{ nm}$
	- $\Delta \tau = 10 \text{ ps}$
	- $f_{rep} = 0.2 2 MHz$
- ▶ Galvo scanner: SCANLAB IntelliSCANde14
	- Synchronized on the laser pulse train
- ▶ Objective: Microscan Obj. UV (Pulsar Photonics)
	- $f_{obj} = 10$ mm
	- $▶ 2 \cdot w_0 < 1.5 \ \mu m$
- **Smallest Structures:** ~of the order of the beam spot diameter

https://commons.wikimedia.org/w/index.php?curid=6002103

- ablation depth the beam radius changes
- In case of a short Rayleigh length this can become significant.

- ablation depth the beam radius changes
- In case of a short Rayleigh length this can become significant.
- And leads to an increase (red) or decrease (yellow) of the energy specific volume

- Depending on the ablation depth the beam radius changes
- In case of a short Rayleigh length this can become significant.
- And leads to an increase (red) or decrease (yellow) of the energy specific volume.
- **The structures become** deeper or less deep than expected (or the work piece has to be shifted)
- Adaption of the model might by needed

Model for short Rayleigh Length

▶ Model:

$$
\frac{dV}{dE} = \frac{1}{2} \cdot \frac{\delta}{\phi_0} \cdot ln^2 \left(\frac{\phi_0}{\phi_{th}}\right)
$$

- ▶ As expected, deeper squares at high fluences and therefore higher energy specific volume compared to the model.
- Adapted Model:
	- ▶ Calculate ablation depth for first layer
	- Adapt spot size resp. ϕ_0 accordingly
	- Repeat for each layer and calculate the full depth
	- \blacktriangleright Then calculate the energy specific volume
- **Least square fit for** ϕ_{th} **an** δ

Model for short Rayleigh Length

▶ Model:

$$
\frac{dV}{dE} = \frac{1}{2} \cdot \frac{\delta}{\phi_0} \cdot ln^2 \left(\frac{\phi_0}{\phi_{th}}\right)
$$

- ▶ As expected, deeper squares at high fluences and therefore higher energy specific volume compared to the model.
- Adapted Model:
	- ▶ Calculate ablation depth for first layer
	- Adapt spot size resp. ϕ_0 accordingly
	- Repeat for each layer and calculate the full depth
	- \blacktriangleright Then calculate the energy specific volume
- **Least square fit for** ϕ_{th} **an** δ

Steel AISI 304, $\Delta \tau = 10 \text{ ps}$, $\lambda = 355 \text{ nm}$, $w_0 = 0.77 \text{ \mu m}$, $N_{SL} = 10$

▶ No formation of CLP observed, also not for very high peak fluences

Some Examples

Micro-Swiss in Steel Butterfly in Steel Structure in Copper

Extreme Precision: Small Spots

▶ Topographic map of Switzerland machined in sapphire with a scale of 1:850'000'000.

- Dimension: 410 μ m x 220 μ m with maximum depth of 20 μ m.
- A disruptive technology in laser micromachining for highest precision and resolution.
- Applications: Almost invisible security features, watches and jewelry, functional surfaces.

Video (8x) of Machinig Switzerlands Topography

Summary

▶ Super Short:

- ▶ The regime of sub 100 fs pulses with an industrial grade set up was investigated in an explorative study concerning ablation efficiency, surface roughness and edge quality.
- Metals, tungsten carbide, PCD, Zirconia and other ceramics (all not shown here): No significant improvement
- Glasses: Massively improved edge quality and reduced roughness at similar energy specific volumes.
- \blacktriangleright Investigations ongoing
- Super small:
	- **Microspot scanning system tested and very precise structures machined**
	- \triangleright No cavity formation in steel in UV with microscan
	- \blacktriangleright Limiting factor Rayleigh range

F H

Berner Fachhochschule Haute école spécialisée bernoise **Bern University of Applied Sciences**

Thank you very much for your kind attention