

Ultimately Dense and Efficient Future Computers

Bruno Michel, Mgr. Smart System Integration, Fellow IEEE Member US National Academy of Engineering and Member IBM Academy of Technology https://www.zurich.ibm.com/st/ https://www.zurich.ibm.com/st/smartsystem/

© 2018 IBM Corporation

Mega Trends with Implications

Datacenter Carbon Footprint

Renewables Energy Cost and Climate

Cognitive Computing Dense and Efficient Systems Roadmap

The End of

Transistor Scaling

Biological Concepts Transform IT Industry

SuperMUC in Munich and Summit in Oak Ridge

© 2019 IBM Corporation

Data Center Evolution ... @ 100 TFLOPS

How are Thermal Resistances Massively Reduced?

Transition from air cooling to liquid cooling

- Water with 4000x better heat capacity and 30x better thermal conductivity

A) Massively reduce convective thermal resistance

- Microchannels (Manifold Microchannel)
 - − High aspect ratio → massive surface enlargement
- Branched hierarchical transport
 - Best mass transport with minimal pumping power

b)

© 2019 IBM Corporation

Bruno Michel, bmi@zurich.ibm.com

В

How are Thermal Resistances Massively Reduced?

B) Massively reduce conductive thermal resistance

- Radical miniaturization and use of silicon
 - Good thermal conduction with less thermal interfaces
- Better interfaces

9

Filling materials/gaps with percolation and improved overall thermal conduction due to necking

Back-side cooling evolution **A A A** Embedded Lid-attached Direct-attached Disruptive cooling approaches Dual-side Volumetric **A | A | A** erposer -Convective interposer Thermal laminate Interlaver

20 um

Top die

PTU

Bottom die

All-copper

interconnect

CU

All Copper Interconnects Reduce Electrical resistance

Syringe (5 ml)

Widely applicable all-copper interconnects by sintering copper nanoparticles.

Robust dip-transfer for 20 µm pillar pitches.

Densification by bonding pressure during sintering reducing electrical resistance close to bulk copper and increasing shear strength by 4x.

 1.2 ± 0.4 m Ω and 24 Mpa shear strength obtained at 200°C with 50.6 MPa bonding pressure.

Scaling to 1 PFlops in 10 Liters

Efficiency comparison

- 1PFlops system currently consumes ~10MW
- 0.1 PF ultra-dense system consumes 20 W

• Ultra-dense Bionic System

- Stack ~10 layers of memory on logic
- Stack several memory-logic stacks to stack of stacks

10¹²

10

10⁶

103

10

CPU

ower [W]

- Combine several blocks of stacks to MCM (MBM)
- Combine MCMs to high density 3D system

Key enabling technologies

- Interlayer cooling
- Electrochemical chip power supply

Impact

- 5'000x smaller power
- 50'000'000x denser
- Scalability to zetascale

P. Ruch, T. Brunschwiler, W. Escher, S. Paredes, and B. Michel, "Towards 5 dimensional scaling: How density improves efficiency in future computers", IBM J. Res. Develop. 55 (5, Centennial Issue), 15:1-15:13 (2011).

© 2019 IBM Corporation

Brain Inspired Computing

- Stepwise introduction of brain inspired concepts: Form Function Material
- Step 1 (Form): Brain inspired packaging with classical CMOS
- Step 2 (Function): Brain-inspired, non-von Neumann architecture
- Step 3 (Material): DNA computing ...
- Chess, Jeopardy, and Go games against humans were unfair
- Computers are challenged more by "open" (Jeopardy) than "closed" system (Chess, Go)

→ Ongoing→ Later

why?

→ Now

CarrlCool Project (EU-FP7, 2014-2017)

Densely integrating WBG switches like GaN with CMOS driving/control can enable higher conversion ratios while maintaning small form factors

N O

CarrlCool Hybrid iVR Implementation

13

14 mm

Iultiple demonstrators buil
n a single interposer tile

Parameter	Description	Value
V _{in}	Input voltage	1.6 V
V _{out}	Nominal output voltage	0.8 V
Pout, max	Max output Power	800mW
η	Efficiency	≥ 90%
PD _{Chip}	Power density on PMIC	≥ 30W/mm²
PD _{Interposer}	Power density on Interposer	≥ 1W/mm²
$\Delta V_{out, pp}$	Max ripple	8 mV
t _{sett, load}	Settling time	40 ns

Low T solder balling + reflow

© 2019 IBM Corporation

4

Datacenter in a Box: Top down Densification

Increase density using hot water cooling structure for power delivery → Density: Key differentiator

1000x denser and 10x more efficient!!

Density enabled b reduced thermal and electrical resistance

Efficiency and low cost due to Bell's law

Bell's Law Demands more Integration

- Every 12-15 years restart of a new generation
- Hardware cost fraction decreases from 100% (mainframe) to <10% while adding functionality

- Sensing and communication were also miniaturized
- Mainly driven by packaging
- Sensing and computing meet in wearables
 - Remember: proximity improves efficiency!

Human Centric Sensing and Computing

- Cost and accessibility of healthcare, blockbuster drugs not personalized
- Stress strong link to human wellbeing
- Human Centric Sensing and Computing: Context key for relevant personalized cognitive services
- Personalized cognitive services in preventive medicine / coaching; work safety; wellbeing; elderly care
- Miniaturization for low-cost non-intrusive monitoring to reduce cost in acute and preventive medicine
- Move intelligence to the edge instead of data to the cloud for solutions to be relevant to people

Summary

- Zero Emission Datacenters from Idea to largest European Computer in 5.5 Years
- Application beyond datacenters in all thermally mediated energy conversion processes
- Thermal and electrical packaging can take lead in many more areas

Packaging Research

- Thermal interfaces, hierarchical microchannel cooling, percolating underfill, all copper interconnect
- 100 PY investment in reducing convective and conductive thermal resistances
- Interlayer cooled chip stack with power deliver and optical communication

Volumetric density scaling to replace Moore's law and transform IT industry

- Big Data and Cognitive Computing Drive demand for more efficient IT hardware
- Brain inspired packaging with combined power supply and cooling → Bionic packaging
- Top down miniaturization: Datacenter in a box as first step

Wearables for health and Human Centric Sensing and Computing

- Bell's law: Mainframe computing PCs mobile computing wearable computing
- Cognitive companion and the augmented human

Thank you very much for your kind Attention!

Acknowledgement

- Ingmar Meijer, Patrick Ruch, Thomas Brunschwiler, Stephan Paredes, Werner Escher, Yassir Madhour, Jeff Ong, Gerd Schlottig and many more for Aquasar and SuperMUC design
- Sebastian Gerke, Rahel Straessle, Arvind Sridhar, Ismael Faro, Yuksel Temiz, Neil Ebejer, Theodore G van Kessel, Keiji Matsumoto, Emanuel Loertscher, Frank Libsch, Hyung-Min Lee, John Knickerbocker, Jonas Weiss, Jonathan E Proesel, Kang-Wook Lee, Mehmet Soyuer, Minhua Lu, Mounir Meghelli, Norma E Sosa cortes, Paul S Andry, Roy Yu, Shriya Kumar, Sufi Zafar, Teodor K Todorov, Yves Martin and many more
- PSI Tobias Rupp and Thomas Schmidt
- ETH Severin Zimmermann, Adrian Renfer, Manish Tiwari, Ozgur Ozsun, Dimos Poulikakos
- EPFL Yassir Madhour, John Thome, and Yussuf Leblebici
- Funding: IBM FOAK Program, IBM Research, CCEM Aquasar project, Nanotera CMOSAIC project, SNF Sinergia project REPCOOL, NRP 70 project THRIVE, EUFP7 project CarrICool, EUFP7 project HyperConnect, DARPA IceCool, KTI / DSolar. IBM Research Frontiers Institute: <u>www.research.ibm.com/frontiers</u>

- Links:
- Smart System Integration
- Functional Electronic Packaging
- Efficiency and Green Technologies

https://www.zurich.ibm.com/st/smartsystem/ https://www.zurich.ibm.com/st/electronicpackaging/ https://www.zurich.ibm.com/st/energy_efficiency/

Smarter Energy: Impact Outside of ICT Industry

© 2019 IBM Corporation