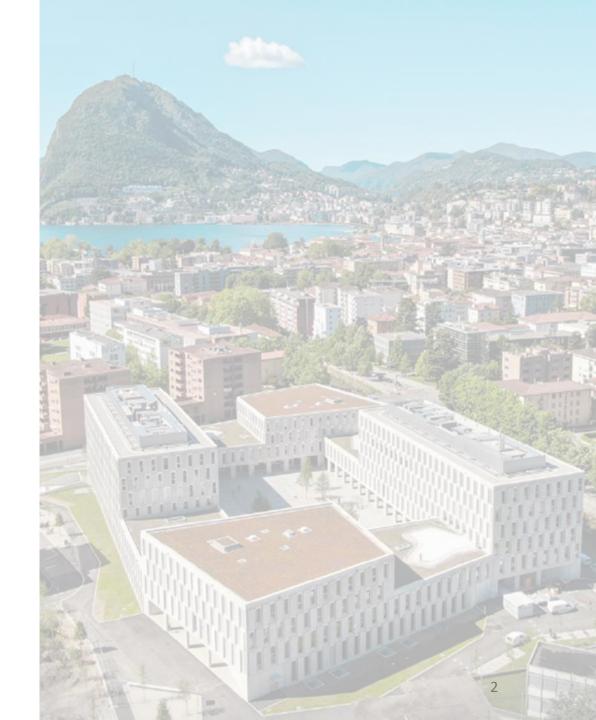
# SUPSI

University of Applied Sciences and Arts of Southern Switzerland

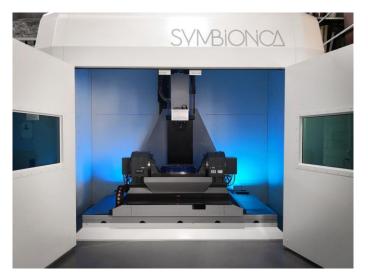
### Exploring Ultrafast Laser Ablation as a scalable solution for surface modification of Ti6Al4V orthopaedic implants


Anneke Orlandini, Francesco Impaziente, Anna Valente





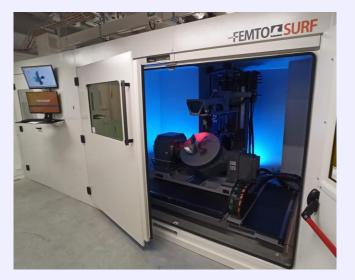
## Outline


- ARM Lab Overview
- Research Challenge
  - Bone remodelling cycle
  - Bacterial Adhesion
- Anterior Lumbar Interbody Fusion (ALIF)
- Ultrafast Laser Ablation
- Equipment
- Methodology
  - Characterization
  - Groove
  - Chemical Treatment
  - Simulated Body Fluid (SBF)
  - X-ray Photoelectron Spectroscopy (XPS)
- Interdisciplinary Activities
  - Antibiotic Coating
  - In-vitro tests
- Future Directions
- Conclusions



Automation, Robotics, and Machines Laboratory (ARM lab)

#### Laser Machines for industrial applications


#### Additive manufacturing



#### **Robotic platforms**



#### Femtosecond laser processing





### **Research Challenge**

### **Orthopedic Devices**

- Orthopaedic Implants
  - Aseptic Loosening
    - Bone resorption
  - Infection
    - Bio film formation
- Biological Characterization of textured surface

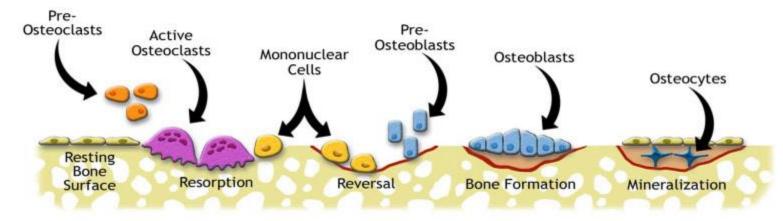
### Swiss National Joint Registry Data for THA and TKA

Table 4.3b

arthroplasty

Reason for revision\* of primary total knee

Multiple responses possible (percentages do not sum to 100).


Table 3.3b Reason for revision\* of total hip arthroplasty Multiple responses possible (percentages do not sum to 100). 2016 - 2021

|                              | N      | %    | The reasons for revisions categories as listed below are only |        |      |
|------------------------------|--------|------|---------------------------------------------------------------|--------|------|
| Loosening femoral            | 3,244  | 21.2 | available from 2015 onwards                                   |        |      |
| Infection                    | 3,200  | 20.9 |                                                               | Ν      | %    |
| Loosening acetabular         | 2,583  | 16.9 | Patella problems                                              | 3,319  | 27.0 |
| Periprosthetic fracture      | 2,647  | 17.3 | Loosening tibia                                               | 2,234  | 18.1 |
| Dislocation                  | 1,850  | 12.1 | Infection                                                     | 2,529  | 20.5 |
| Wear                         | 1,053  | 6.9  | Femorotibial instability                                      | 2,222  | 18.1 |
| Metallosis                   | 774    | 5.1  | Pain (of unclear origin)**                                    | 1,249  | 10.1 |
| Acetabular osteolysis        | 622    | 4.1  | Loosening femur                                               | 1,408  | 11.4 |
| Position/Orientation of cup  | 715    | 4.7  | Wear of inlay                                                 | 676    | 5.5  |
| Femoral osteolysis           | 574    | 3.8  | Joint stiffness/arthrofibrosis                                | 735    | 6.0  |
| Trochanter pathology         | 242    | 1.6  | Component malposition femur                                   | 547    | 4.4  |
| Status after spacer          | 331    | 2.2  | Component malposition tibia                                   | 484    | 3.9  |
| Implant breakage             | 316    | 2.1  | Loosening patella                                             | 266    | 2.2  |
| Blood ion level              | 239    | 1.6  | Patellar instability                                          | 300    | 2.4  |
| Position/Orientation of stem | 384    | 2.5  | Periprosthetic fracture femur                                 | 256    | 2.1  |
| Impingement                  | 210    | 1.4  | Sizing femoral component                                      | 177    | 1.4  |
| Acetabular protrusion        | 173    | 1.1  | Periprosthetic fracture tibia                                 | 94     | 0.8  |
| Squeaking                    | 90     | 0.6  | Sizing tibial component                                       | 61     | 0.5  |
| Other                        | 1,649  | 10.8 | Periprosthetic fracture patella                               | 52     | 0.4  |
| Total                        | 20,896 |      | Other                                                         | 1,333  | 10.8 |
|                              |        |      | Total 2016–2021                                               | 17,942 |      |

## **Background - Bone Remodelling cycle**

### Dynamic process

- Osteoblasts
  - Responsible for bone growth  $\rightarrow$  *cuboid shape ca. 10 µm*
  - Sensitive to surface characteristics  $\rightarrow$  cell contact guidance mechanism
- Osteoclasts
  - Responsible for bone resorption



### **Background - Bacterial Adhesion**

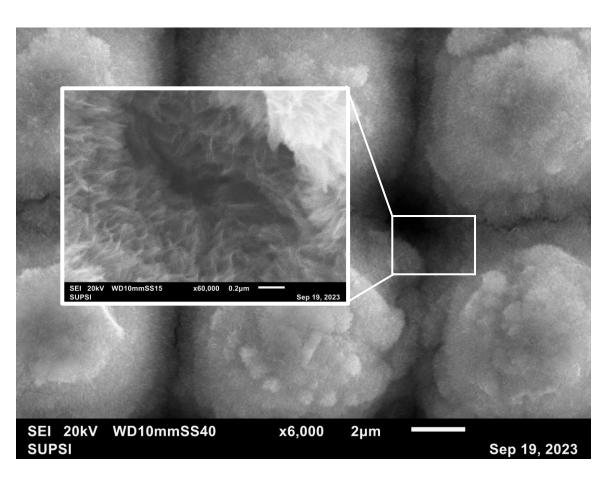
### Attachment steps

- Adherence
  - Van der Waals forces
  - Electrostatic
  - Hydrodynamic
- Accumulation
  - Bio-film formation
- Maturation
- Detachment



## **Anterior Lumbar Interbody Fusion (ALIF)**

### • Goals


SUPSI

- Osteointegration
  - Slow bone generation
- Enhanced anti-bacterial activity
  - Frequent infections in the screw housing
- No cell growth
  - Surrounding tissue adhesion to the device



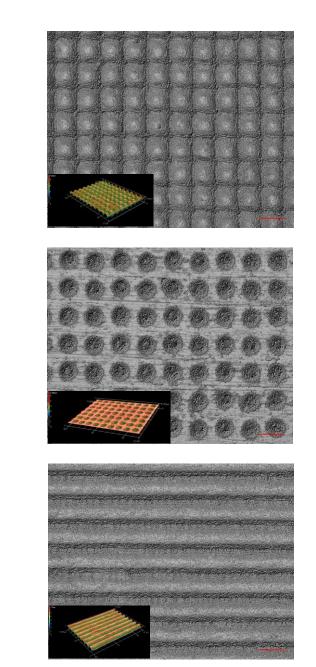
### **Ultrafast Laser Ablation**

- Minimal Heat Affected Zone (HAZ)
- High reproducibility and resolution
  - Meso-scale structures
    - Structure [µm]
    - Laser Induced Periodic Surface Structures LIPSS [nm]



## Equipment

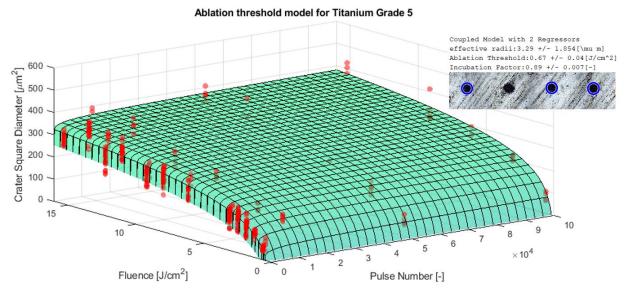
- Mesomorph Machine
  - Wavelength: 515-1030 nm
  - Pulse Duration: 225 fs-10 ps
  - Rep. Rate: 60-1000 kHz
  - Max. Power: 20 W
  - Max. Fabrication Speed: 200 mm/s


### • 3 Stations

- Femtosecond laser station
- Interferometric measurements
- Direct atomic layer processing DALP



### Methodology

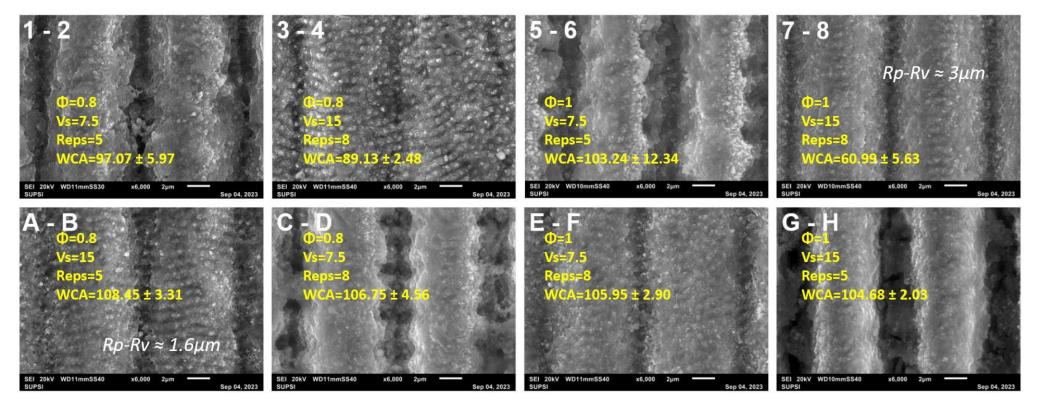

- Ti6Al4V Samples
  - Ablation threshold definition
  - Surface structuring optimization
- Machined pattern
  - Grooves  $10 \ \mu m$
  - Data Collection
- Chemical Treatment
  - None or Alkali Treatment (NaOH)
- Simulated Body Fluid
  - Apatite coating
- XPS Measurements
- In-vitro tests
- Antibiotic Coating



Structured surfaces - (Red line, 10  $\mu$ m length)

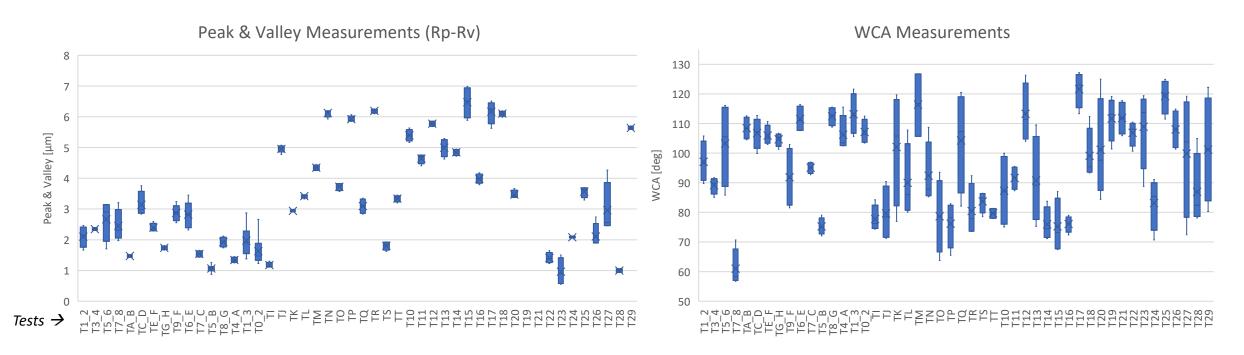
### **Ti6AI4V Samples**

- D-squared Measurements
  - Ablation Threshold
  - Incubation Factor
- Crater Measurement
  - Feature Detection
  - Automatic measurement of diameter




DOI: <u>10.1016/j.procir.2022.05.035</u>

### **Machined Pattern**

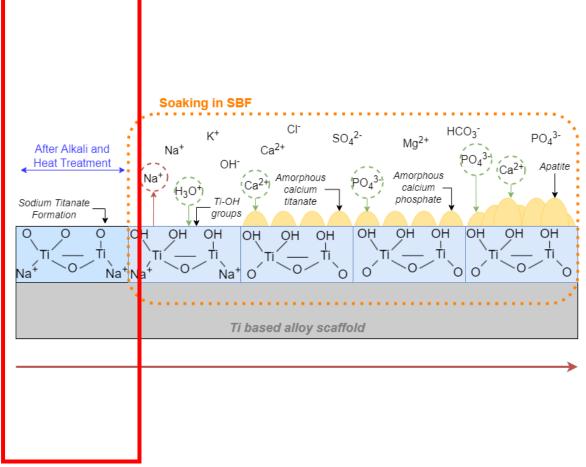

- Fixed Parameters
  - Pulse duration  $\rightarrow$  900 fs
  - Rep. Rate  $\rightarrow$  1000 kHz
  - Wavelength  $\rightarrow$  1030 nm

- Experimental Variables
  - Power  $\rightarrow$  min 123 max 337 mW
  - Pulse Overlap  $\rightarrow$  min 0.5 max 1  $\mu$ m
  - Nr Repetitions  $\rightarrow$  min 5 max 20



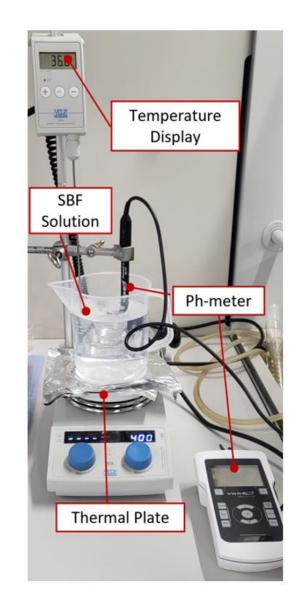
12

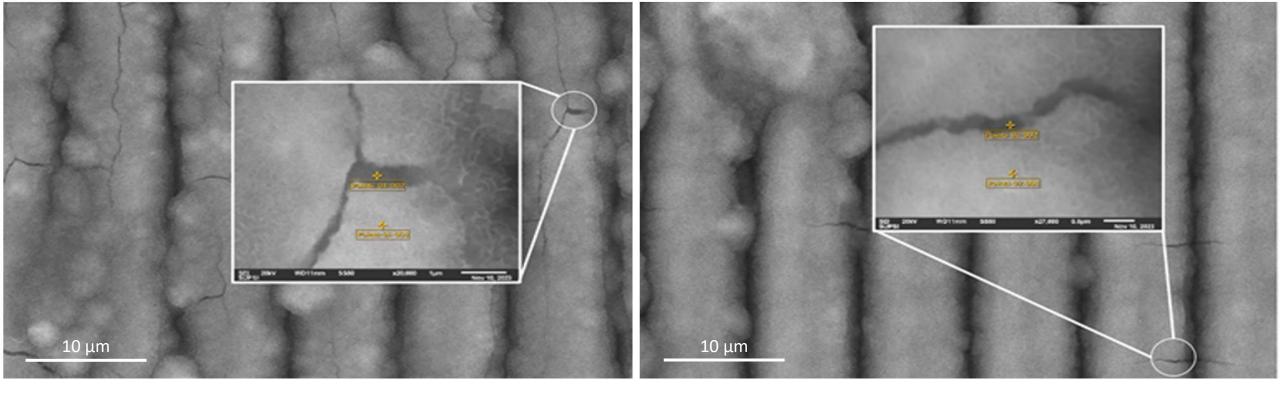
#### SUPSI




### Groove Measurements

- Analysis
  - Low Rp-Rv Variability
  - Water contact angle (WCA) stable measurements for some tests (± 3.5 °)


### **Chemical Treatment**

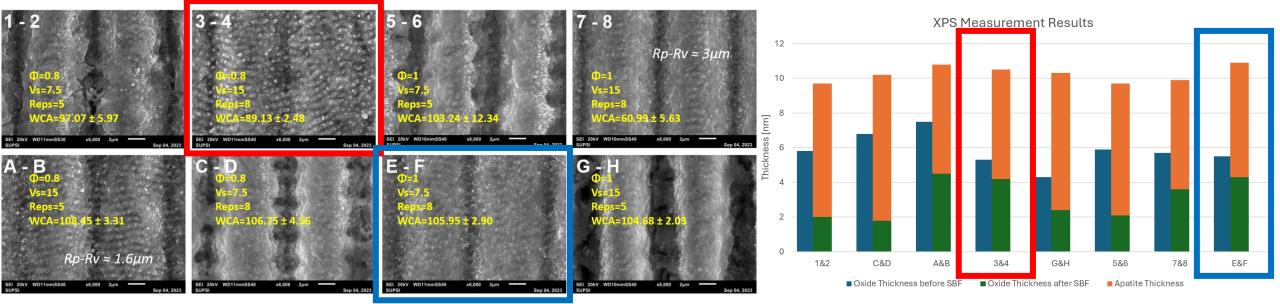

- Procedure
  - 5M solution of NaOH
  - 24 hrs at 60°C
  - Washing steps in distilled water for 1 hr at 80°C
  - 24 hrs drying at room temperature
  - 24 hrs at 250°C
- Formation of Sodium Titanate onto the surface
  - Improves osteointegration process



## Simulated Body Fluid (SBF)

- Preparation
  - ISO 23317 Formulation
- Testing
  - 7 days at 37 ± 0.5 °C
- Goal
  - Assessment of Mineralization of the surface
    → Apatite formation






### Simulated Body Fluid (SBF) testing

- Samples Alkali-treated
  - Higher apatite deposition (≈ +10%)
  - Additional step critical for impurities
- Samples with no additional chemical treatment
  - Lower apatite deposition
  - Homogeneous layer, smaller orthogonal cracks

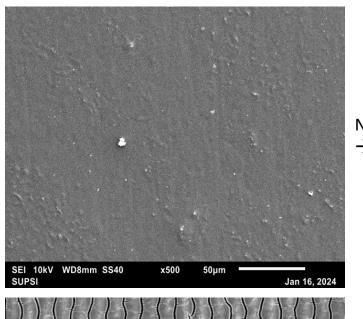
### **XPS Measurements**


- X-ray photoelectron Spectroscopy (XPS) Measurements
  - Oxide Layer integrity
  - LIPSS enhanced patterns show more resistance to corrosive environments
    - Oxide layer reduced by  $\approx 15\%$

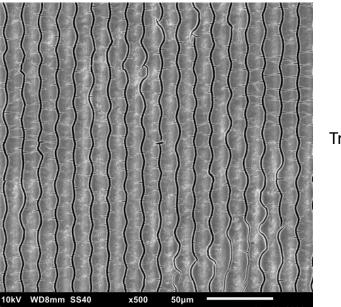


### **In-vitro tests**

*In collaboration with USI – Biomedical Sciences NRLab, Prof. Perale* 


- Media Loading
  - Human Mesenchymal cells Isolated from Adipose Tissue
  - Droplets onto surface ca. 2500 cells/cm2
- Analysis
  - Variability of cells in input  $\rightarrow$  droplet
  - Lack of nutrient flow
  - Discrete measurements

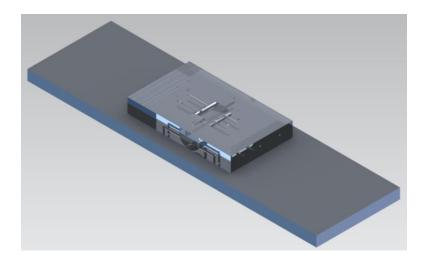


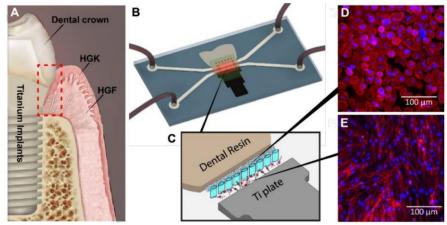

## **Antibiotic Coating**

*In collaboration with Memti Lab – Sr. Researcher De Corso* 

- Layer-by-layer coating technology for antibiotic placement
  - Non-treated surface vs fs-treated surface
  - After 48 hrs Non-treated surface released all the drug → coating is absent




Non-Treated Surface  $\rightarrow$  coating is absent




**Treated Surface** 

### **Future Directions**

- Advanced In-vitro testing
  - Precise spatiotemporal control & manipulation *i.e. loading conditions, cell flow*
  - Single cell behaviour
  - Cell-cell interaction
- Al and Machine Learning
  - Algorithms for topological process recipes designed for medical devices





DOI: 10.1039/x0xx00000x

### Conclusions

- Grooves
  - Non-alkali treated samples allow for a homogeneous apatite layer
  - LIPSS allow the surface for higher resistance in corrosive environment
- Ongoing activities
  - In-vitro tests are correlated with fs process recipes
  - Maximize drug release tests
- Machining time (7x7 mm)  $\rightarrow$  Up to **400 CHF** saving in production costs!
  - Commercial machine  $\rightarrow$  3.5 hrs
  - Mesomorph machine  $\rightarrow$  9 mins

## Thank you!

