Smart Food Production Machinery The Impact of Optical Systems

Manuel Höhener | Head of R&D CM



# CONFIDENTIAL t of Optical System mart Food Pro

# Our relevance

8 billion people worldwide

# 2 billion

people each day enjoy food produced on Bühler equipment

# 1 billion

people travel in vehicles partly produced with Bühler machinery



### Bühler is part of the everyday life of billions of people







### Smart Food Production Machinery - The Impact of Optical Systems Pro and contra

- Contactless
- Wear-free
- Visual impression, close to human experience
- 3D information
- more opportunities (IR, NIR etc.)

# Pros



• Machine can be closed hygienic design / process visualization in control room

- Distance to the object
- Free view to the object
- Resolution, Reflections
- Visible range

Cons

- Illumination  $\rightarrow$  heat source
- incidence of extraneous light
- depth of focus

- Danger of lens contamination
  → cleaning
- Glass not usable in food process
  → lens
- Safety issues
  → laser class
- Reliability
  → algorithm

### Smart Food Production Machinery - The Impact of Optical Systems Applications





#### Photonics

- Sensors & Cameras
  - Optical filters transform light information
- Ophthalmic
  - Coatings change transmission absorption or improve usability
- Glass coating
  - Coatings for energy reduction
- Metallization
- High reflection



#### Food safety and quality

- Sorting
  - Rice, wheat, grain, pulses, nuts, coffee, frozen fruits & vegetables ...
- Typical defects
  - Foreign materials such as shells, stones ...
  - Chips & scratch, brokens, out form
  - Color defects
  - Insect damage & pinholes
  - Black spot, inedible, rotten grains
  - Moister, protein, ash, starch, gluten
  - Mycotoxins, ergot, fusarium
  - Allergens



#### Smart process control

- Color
- Process adaption according to product color
- NIR
  - Process control according to product chemical
- Pattern and topology
  - Process adaption according to pattern recognition or topology changes



### Smart Food Production Machinery -The Impact of Optical Systems

#### **Spectral Vison**

- Full color camera
- InGasAS to remove foreign material
- Xenon IR lighting



BUHLER



## Smart Food Production Machinery -The Impact of Optical Systems

#### Inline spectrometer process control

- The NIR probe detects the chemical composition
- The CAM probe detects color and specks



# Smart Food Production Machinery - The Impact of Optical Systems Process control







#### Online particle size measurement

- Chocolate film is radiated with light
- Product contents absorb NIR radiation
- Peak height correlates with volume of substance based on calibration substance





#### Product film optimization

- Image processing pattern detection
- Area camera system





#### Plasticity control

- Laser triangulation measurement
- Perform a topographic profile



Tomorrow

### Smart Food Production Machinery - The Impact of Optical Systems Photonics - Drivers for tomorrow's life



BUHLER

Smart Food Production Machinery -The Impact of Optical Systems

#### Sorting

- Enlargement to other ingredients
- Food safety visualization of bacteria ...
- Lower resolution will be compensated by AI
- ...

#### Process control

- Lab measuring methods moves to inline solutions as particle size measurements ...
- Color, moister ... measures in difficult environments like hot temperatures (roasting)
- Visions systems working with little light





#### INNOVATIONS FOR A BETTER WORLD