

Swissphotonics Workshop 2019
Thermal Management in Photonics Packaging

Actively Cooled Diode Laser Bars

Requirements and Assembly Technology

II-VI Laser Enterprise

Jürgen Müller, Reinhard Brunner, Johanna M. Wolf, Vinzenz Beer

A Global Leader In Semiconductor Lasers

- Rich heritage of innovation for over 30 years
- State-of-the-art semiconductor laser technology and manufacturing infrastructure
- 280 employees

Global Presence

- Capacity Expansion through Epiworks and Anadigics
- Backend Manufacturing at Laser Enterprise
 Philippines, Photonics Shenzhen, and Fabrinet

Laser Diode Portfolio

- High Power Laser Diodes
- High Volume Components VCSELs
- 980nm Single-mode Pump Lasers

MATERIALS THAT MATTER®

Performance of Diode Laser Bars

Thermal Management

Micro Channel Heat Sink

Reliability

MATERIALS THAT MATTER®

Performance of Diode Laser Bars

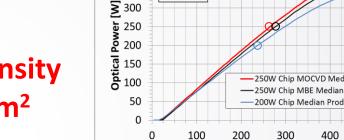
Thermal Management

Micro Channel Heat Sink

Reliability

Overview II-VI's Product Generations

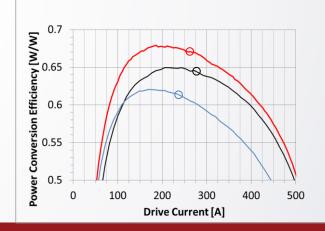
Median of multi-year production


250W product

- 47 Emitters
- Operation current 255-265A
- PCE@250W >65% for 920 to 1080 nm \Rightarrow 380 W/cm^2
- PCE peak 67-68%
- Rollover 380W @ 475A

MOCVD technology:

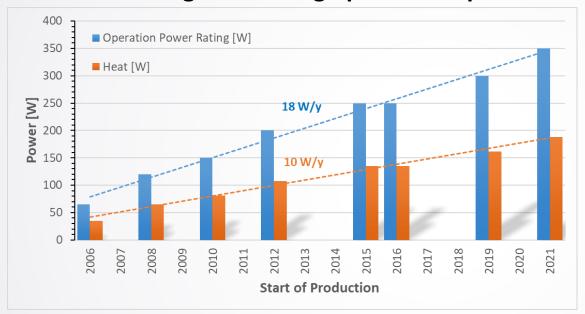
- improved control on epitaxy design
- 3% improved conversion efficiency



25 °C

1040nm

400 350



Drive Current [A]

500

Evolution of Output Power Rating

Power ratings of II-VI high power bar product line

Chip and packaged bar optimized for

- Output power
- Conversion efficiency
- (Slow Axis) divergence
- Endurance
- Emitter line flatness
- Build height

Wavelength range 920nm to 1080nm

Efficient thermal management needed

MATERIALS THAT MATTER®

Performance of Diode Laser Bars

Thermal Management

Micro Channel Heat Sink

Reliability

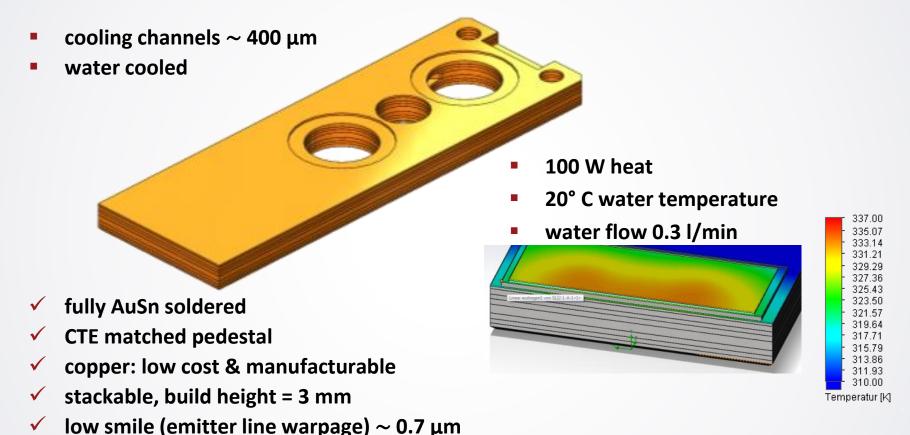
Thermal Management

- reducing heat production => increase conversion efficiency
 - chip design
 - electrical resistance
 - epitaxial growth quality

efficient heat removal

- conductive cooling (passive)
- active cooling e.g. micro-channel heat sink

Micro-Channel Heat Sink


Heat exchanger using fluidal flow through microchannels (typically < 1 mm)

Requirements for cooling of a high power Diode Laser Bar

- reliability: several 10k hours
- low mechanical stress on chip
- manufacturable
- low cost
- small footprint and build height
- high cooling capacity
 - contact area
 - cooling distance (chip to microchannels) and material
 - cooling agent:
 - thermal capacity
 - viscosity
 - velocity

"Labrador" Micro-Channel Cooler

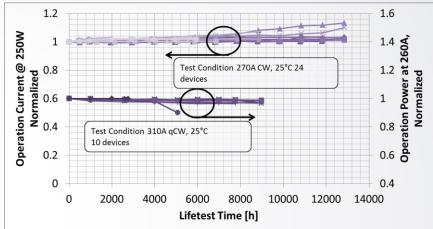
✓ thermal resistance ~ 0.3 K/W

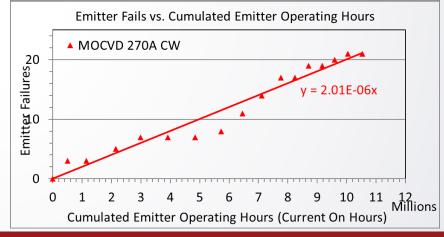
MATERIALS THAT MATTER®

Performance of Diode Laser Bars

Thermal Management

Micro Channel Heat Sink


Reliability


Reliability of 250W Product

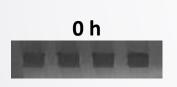
Industrial reliability requirements - typically:

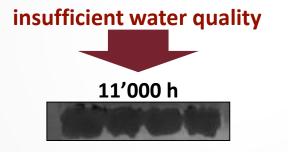
- 20'000 h CW or 35'000 h 50% DC pulsed
- End-of-life: 5-10% operation current increase

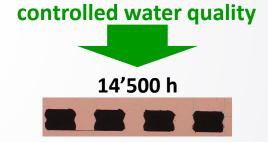
- Constant emitter failure rate 0.2% in 1000 h (2 kFIT)
- 4% average degradation in 20'000 h
- MTTF @ EOL 10%: 50'000 h

Reliability of Micro Channel Cooler

reliability strongly dependent on

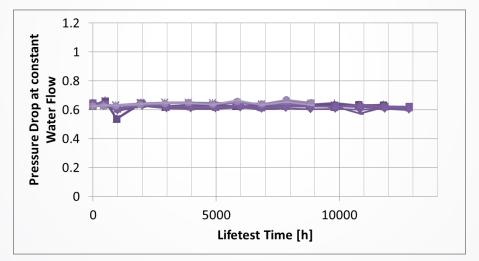

- erosion
- electrochemical corrosion


flow rate


O, CO₂ concentration

pH

conductivity


Pressure drop **≥** 50%!

Pressure drop constant!

Micro Channel Cooler Lifetime

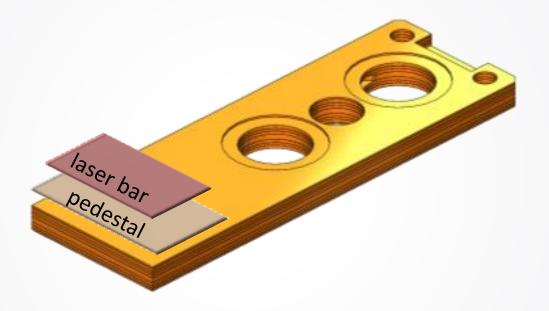
Long term stability of the Micro Channel Cooler

- Results from above lifetest
- Cooling performance stable in 13'000 h test NO power degradation
- Pressure drop at constant flow stable in 13'000 h test

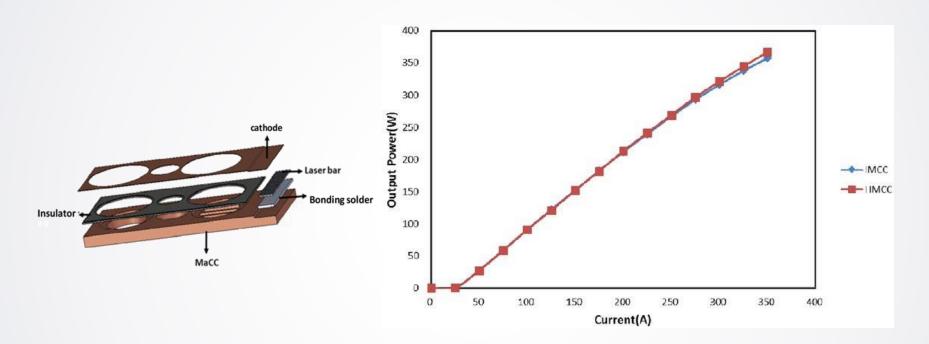
> Package suitable for long term operation

Page 15

MATERIALS THAT MATTER®

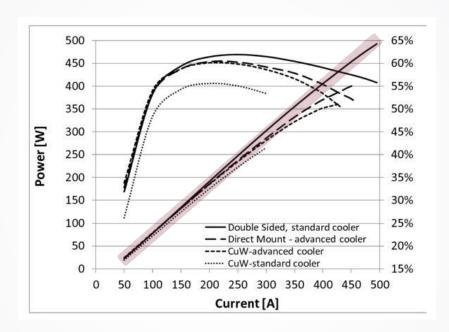

Performance of Diode Laser Bars

Thermal Management

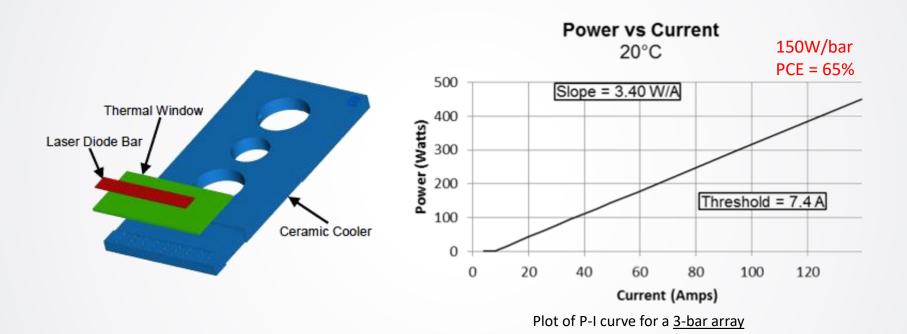

Micro Channel Heat Sink

Reliability

Perspective: stay cool!



Direct Bonding


Boxue Wang et al., "High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology", Proc. SPIE 10513, 2018

Double side cooling

Stefan Heinemann et al., "Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars", Proc. SPIE 10514, 2018

Ceramic cooler

Jeremy Junghans, et al. "Custom ceramic microchannel-cooled array for high-power fibercoupled application", Proc. SPIE 10514, 2018

